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Abstract

For many data mining problems, obtaining labels is costly and time consuming, if not
practically infeasible. In addition, unlabeled data often includes categorical or ordinal
features which, compared with numerical features, can present additional challenges.
By establishing a connection between unsupervised support vector machine optimiza-
tion and spectral Laplacian optimization, we propose a new unsupervised spectral rank-
ing method for anomaly (SRA). Using the 1st non-principal eigenvector of the Lapla-
cian matrix directly, the proposed SRA can generate anomaly ranking either with re-
spect to the majority class or with respect to two main patterns. The choice of ranking
reference can be made based on whether the cardinality of the smaller class (positive or
negative) is sufficiently large. Using an auto insurance claim data set but ignoring la-
bels when generating ranking, we show that our proposed SRA significantly surpasses
existing outlier-based fraud detection methods. In addition, based on a couple of ad-
ditional data sets, for which the rare class can be determined based on the attributes
dependence, we illustrate that the performance of SRA for unsupervised ranking of
rare classes. Finally we demonstrate that, while our proposed SRA yields good per-
formance for a few similarity measures for the auto insurance claim data, notably ones
based on the Hamming distance, choosing appropriate similarity measures for a fraud
detection problem remains crucial.
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1. Introduction

According to the 2013 survey from FICO, an American company who provides
analytics and decision making services, one in three insurers in North American do
not feel adequately protected against fraud, with auto insurance considered as one of
the most vulnerable and 58% survey respondents anticipate increase in auto insurance
fraud. In addition, many expect to see an increase in auto insurance fraud by organized
rings.

Fighting against insurance fraud is a challenging problem both technically and op-
erationally. It is reported in (Tennyson and Salsas-Forn, 2002; Derrig, 2002), approxi-
mately 21%∼ 36% auto-insurance claims contain elements of suspected fraud but only
less than 3% of suspected fraud is prosecuted. Traditionally insurance fraud detection
relies heavily on auditing and expert inspection. Since manually detecting fraud cases
is costly and inefficient, investigative resource is severely constrained. Data mining and
machine learning techniques have the potential to detect suspicious cases timely and
significantly reduce economic losses, both to the insurers and policy holders. In addi-
tion, due to the need to detect fraud prior to the claim payment, data mining analytics
is increasingly recognized as a key in fighting against fraud. There is great demand for
effectively predicative methods which maximize the true positive detection rate, min-
imize the false positive rate, and are able to quickly identify new and emerging fraud
schemes.

Without available labels, fraud detection can be formulated as an anomaly rank-
ing problem. Anomaly detection constitutes a large collection of data mining problems
such as disease detection, credit card fraud detection, and any detection of any new pat-
tern amongst the existing patterns. In addition, comparing to simply providing binary
classifications, providing a ranking which represents the degree of relative abnormality
is crucial in cost and benefit evaluation analysis, as well as in turning analytic analysis
into action.

Many methods for supervised rare class (anomaly) ranking exist in the literature.
RankSVM Herbrich et al. (2000) can be applied to a bi-class rare class prediction prob-
lem. Unfortunately solving a nonlinear kernel RankSVM problem is computationally
prohibitive for large data mining problems. Using SVM ranking loss function, a rare
class based nonlinear kernel classification method, RankRC, in proposed recently in
Tayal et al. (2013b,a).

Unfortunately it may not be feasible or preferable to use supervised anomaly rank-
ing for fraud detection. Instead, an unsupervised anomaly ranking is more appropriate
and beneficial. Due to time and resource cost in obtaining labels for learning, unsuper-
vised learning has the advantage of a faster and more efficient application of knowledge
discovery. This is often crucial in time sensitive application domains such as fraud de-
tection. In addition, it may be practically infeasible to obtain accurate labels. In the
context of fraud detection, obtaining clearly fraudulent and non-fraudulent samples is
very costly, if not impossible. Even if one ignores human investigative costs, it is quite
common to find fraud investigators to differ in their claim assessments. This raises
issues of data (label) trustworthiness. Moreover, the need to detect fraudulent claims
before payments are made and to identify new fraud schemes quickly essentially rule
out supervised learning as a candidate solution to effective fraud detection in practice.
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In such cases, unsupervised learning is preferable, in order to quickly extract informa-
tion in available data.

Standard unsupervised anomaly detection methods include clustering analysis and/or
outlier detection methods, see, e.g., Hastie et al. (2009). Many outlier detection meth-
ods have been proposed in the literature, e.g. k-Nearest Neighbor (k-NN) outlier
detection, One-Class Support Vector Machine (OC-SVM) (including kernel-based),
and density-based methods such as Local Outlier Factor (LOF). Effectiveness of these
methods has been investigated in numerous application domains including network in-
trusion detection, credit card fraud detection, and abnormal activity detection in elec-
tronic commerce. However, many standard outlier detection methods, e.g., one-class
SVM, are only suitable for detecting outliers with respect to a single global pattern
which we refer to as global outliers in this paper. An implicit assumption in this case
is that normal cases are generated from one mechanism and abnormal cases are gen-
erated from other mechanisms. These methods work well for some of aforementioned
problems, e.g., when only a single majority pattern exists. Density-based methods can
be effective in detecting both global outliers and local outliers; but assumption here is
that density is the only discriminant for abnormality. Density-based methods fail when
small dense clusters also constitute abnormality. In addition, density based methods,
e.g., LOF, often require users to define a neighborhood range to compare the density.
Tuning these parameters can often be tricky.

Understandably, unsupervised learning is much more difficult than supervised learn-
ing since learning targets are not available to guide the learning process. In practice,
difficulty in unsupervised learning is further exacerbated by the additional challenge
in identifying relevant features for unsupervised learning methods. Based on afore-
mentioned challenges, it then comes to no surprise that the existing literature on auto
insurance fraud detection typically formulates the problem as a supervised learning,
see, e.g., Phua et al. (2004, 2010) and references therein.

The literature on unsupervised auto insurance fraud detection is extremely sparse.
To the best of our knowledge, it includes the self-organizing feature map method
Brockett et al. (1998) and PRIDIT analysis Brockett et al. (2002); Ai et al. (2012,
2009), which is based on RIDIT Score and Principal Component Analysis. Note that
studies in Brockett et al. (1998, 2002); Ai et al. (2012, 2009) have been conducted
using the single Personal Injury Protection (PIP) data set, which is provided by Auto-
mobile Insurance Bureau (AIB) from Massachusetts Brockett et al. (2002). This data
set has been preprocessed by auditors and fraud detection inspectors and the features
are the red flag selected by domain experts. Furthermore, values of explanatory vari-
ables for fraudulent instances in this data set tend to be smaller than that of the instances
from non-fraudulent class, which corresponds to ranking of fraudulent suspiciousness
to some degree. Consequently it is reasonable to regard this as a partially supervised
learning, which is susceptible to, at least partially, inadequacies in the labeling process
for fraud detection. In addition, auto insurance or health insurance claim data often
consists of numerical, ordinal, categorical, and text data. Indeed it would be difficult
to apply methods in Brockett et al. (1998, 2002); Ai et al. (2012, 2009) without first
preprocessing from domain experts. Moreover, when claim data consists of many cat-
egorical features, it is reasonable to expect that data can form more than one major
pattern. This makes any single class based outlier detection method less likely to be

3



effective.
The economic value of an efficient unsupervised anomaly ranking, without any help

from domain experts, can be substantial. In this paper, we propose a new unsupervised
ranking method for anomaly based on spectral analysis. Specifically we consider both
rare class ranking, in which anomaly is assessed with respect to a single majority class,
as well as anomaly ranking which is assessed with respect to more than one major
pattern.

Given a data set of input features, anomaly can be assessed with respect to marginal
feature distributions as well as feature dependence relationships, which can be either
linear or nonlinear. Following research on use of kernels to measure nonlinear feature
dependence, see, e.g., Gretton et al. (2005); Song et al. (2012), we focus on detecting
anomaly in feature dependence using similarity kernels, where the similarity captures
a dependence relation among input features. We assume that a similarity kernel, which
is constructed to capture a feature dependence from given input features, is given. We
then use spectral analysis to compute the first bi-modal non-principal eigenvector to
generate anomaly ranking. We also compute the 2nd non-principal eigenvector to assist
visualization. We also apply several standard anomaly detection methods on auto in-
surance problem and compare the performance with our proposed ranking algorithms.

The main contribution of this paper is summarized as follows

• We observe a connection between an unsupervised Support Vector Machine
(SVM) optimization formulation and the spectral optimization. Specifically we
demonstrate that spectral optimization based on the Laplacian matrix can be
viewed as a relaxation of unsupervised SVM. Moreover, it can be interpreted as
a constant scaling-translation transformation of an approximate optimal bi-class
classification function evaluated at given data instances.

• Motivated by the above observation, we propose an unsupervised spectral rank-
ing for anomaly (SRA) algorithm which generates ranking directly from the non-
principal bi-modal eigenvectors of a normalized Laplacian matrix.

• Using the real auto insurance claim data in Phua et al. (2004), we evaluate effec-
tiveness of the unsupervised SRA for detecting anomaly with respect to multiple
major patterns. We show that the proposed SRA performs significantly better
than existing methods. Indeed it comes close to the in-sample training perfor-
mance of a random forest supervised classification, which can be considered an
upper bound for this problem.

• We demonstrate effectiveness of the unsupervised SRA for abnormal detection
with respect to a single majority class using a few real data sets from UCI ma-
chine learning repository.

Presentation of the paper is organized as follows. In §2, we review similarity mea-
sures which are used in our computational investigation. In §3, we summarize the basic
idea of spectral analysis. This is followed by presenting spectral optimization as a non-
convex relaxation of the unsupervised support vector machine classification in §4. In
§5, we propose a new unsupervised spectral ranking for anomaly method (SRA). We
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present and discuss, in §6, the results from the proposed ranking method for the auto
insurance claim data. Although we focus in this paper in applying our proposed method
for auto insurance fraud detection, we note that it can be applied to other anomaly de-
tection problems as well. We recognize however that appropriate choice of similarity
measure may depend on specific application context. Brief discussion of applying our
methods on other real data sets are included in §7. Concluding remarks are given in
§8.

2. Similarity Measures for Categorical Data

In practice, representation of human activities and behavior often leads naturally
to categorical (nominal) and ordinal data. Since most existing data mining methods
solely focus on numerical values, a common preprocessing technique for categorical
data expands categorical features into a set of binary indicators. Unfortunately this
can inject unintended order and scale into the representation, which are absent from
the original data. This can potentially significantly disturb feature importance in the
original data and lead to poor pattern recognition, especially under unsupervised learn-
ing settings. However, this crucial understanding is often missing in practice. Indeed
we fail to obtain any meaningful results on the auto insurance data set considered in
this paper, when we treat categorical data directly by performing binary expansion and
apply existing clustering and outlier detection methods.

A more meaningful treatment for categorical data is to use a similarity measure
to capture relationship between input categorical features. Indeed similarity measures
have been studied for more than a century, see, e.g., Boriah et al. (2008) and references
therein. In this paper we consider two types of similarity measures: nominal value
definition driven and nominal value distribution driven similarities.

Definition driven similarity is defined directly from the specification of the feature
nominal values. For auto insurance fraud detection, match and mismatch in nominal
values of categorical features form an intuitive basis for comparing claim patterns.
Hence we mainly focus on the overlapping similarity, which is the simplest similarity
measure, and its derived kernels. Our subsequent discussion assumes that the data
set comes from sampling of random n-dimensional categorical vector D, with the ith
feature Di having |Di| distinct nominal values, i = 1,2, · · · ,n.

Overlapping Similarity
Given two n-dimensional feature vector x and y, overlapping similarity is given by

sO(x, x̃) = 1 − dH (x, x̃)

where dH (x, x̃) is the Hamming distance defined as the number of features that x and x̃
do not match divided by the total number of features:

dH (x, x̃) =

n∑
i=1
δ(xi, x̃i)

n
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where

δ(xi, x̃i) =
{

1, xi 6= x̃i
0, xi = x̃i

Considering the number of nominal values in each feature, a weighted Hamming
distance has also been considered in David and Averbuch (2012)

dWH (x, x̃) =
n∑

i=1

δ(xi, x̃i)
|Di|

.

Overlapping similarity is in fact a valid kernel function, see, e.g., Gärtner et al. (2006).
Replacing Euclidean distance in a standard Gaussian kernel by the Hamming distance,
we immediately obtain a Gaussian kernel derived from the Hamming distance, i.e.,

kGH (x, x̃) = e−
dH (x,x̃)

2σ2 (1)

where σ > 0 is a constant kernel width parameter.

Adaptive Gaussian Kernel
In the Gaussian Hamming Kernel (1), a single bandwidth σ is applied to every data

instance. It has been argued in David and Averbuch (2012) that clustering performance
can be improved using an adaptive bandwidth. where |Di| is the number of distinct
values in that dimension. Corresponding to the weighted Hamming distance, one can
consider an adaptive kernel

kWH (x, x̃) = e−
dWH (x,x̃)
σ(x,x̃)

where σ(x, x̃) is a data driven adaptive bandwidth determined by a fixed number of
nearest neighbors of data instance x and x̃. In the subsequent section, we use β to
denote the neighborhood size parameter of this kernel in order to avoid confusion.

Hamming Distance Kernel
Kernels have been shown to be very successful in machine learning and data min-

ing, since they provide a uniform way to handle complicated relationship between fea-
tures. For categorical data, Hamming distance kernel has been introduced in Couto
(2005), which can be viewed as a variant of the string kernel Lodhi et al. (2002).

Let Dn be the cross product over all n input feature domains. Hamming distance
kernel is defined by implicitly considering the |Dn|-dimensional feature space in which
each possible feature nominal value combination represents one dimension. For each
u representing one dimension in the |Dn|-dimensional kernel feature space, an explicit
mapping is defined to map any instance x into this dimension, i.e., θu(x). For any given
original input features x and x̃, the kernel function k(x, x̃) equals the inner product the
mapped features {θu(x),u ∈ Dn} and {θu(x̃),u ∈ Dn}. More specifically, let Di be the
domain of the ith feature. For each u ∈Dn, given a categorical instance x = (x1, ...,xn),
xi ∈ Di, we define an explicit mapping:

θu(x) = λdH (u,x) (2)
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where λ ∈ (0,1) is a damping parameter. Note that θu(x) is just one dimension of the
kernel feature space. Thus the Hamming distance kernel between instances x and y is:

kH (x, x̃) =
∑

u∈Dn

θu(x)θu(x̃) (3)

Directly computing the Hamming distance kernel has an exponential computational
complexity. Fortunately a dynamic programming technique can be applied, which al-
lows this kernel to be computed efficiently following the recursive procedure below
Couto (2005):

k0(x, x̃) = 1
k j(x, x̃) = (λ2(|D j|− 1 − δ(x j, x̃ j)) + (2λ− 1)δ(x j, x̃ j) + 1)k j−1(x, x̃), j = 1, · · · ,n

and kH (x, x̃) = kn(x, x̃).
While evaluating the similarity between a pair of instance x and x̃, Hamming dis-

tance directly compares nominal values of x and x̃ to determine the number of different
values. In contrast, a Hamming distance kernel assesses the similarity between x and
x̃ in referencing to all possible nominal value combinations of the categorial attribute.
Consequently, a Hamming distance kernel can capture more information than the sim-
ple Hamming distance (overlapping similarity).

Distribution driven similarity is determined from distributions of feature values.
This type of similarity measures may adjust similarity for rare categorical values, which
introduces additional information in representing the relationship of data instances.
This can potentially detect different patterns in comparison to simpler feature definition
driven similarity measures.

To illustrate, we consider here DISC (Data-Intensive Similarity Measure for Cate-
gorical Data) Desai et al. (2011), which is an example of distribution driven similarity
measure for categorical data. DISC attempts to represent the underlying semantics of
the data by capturing relationships that are inherent in the data. Different from other
distribution driven similarities, DISC is based on the cosine similarity of co-occurrence
statistics for different feature values. Since the main purpose of using DISC in this pa-
per is to illustrate effect of similarity on the performance of a ranking method, here
we simply refer an interested reader to Desai et al. (2011) for a detailed definition and
discussion on DISC.

3. Spectral Analysis and Clustering

Spectral clustering is a more recent, popular, and successful clustering technique,
which often outperforms traditional clustering techniques such as k-means and hier-
archical clustering Hastie et al. (2009). Here we briefly introduce and motivate the
method. More detailed discussion can be found in Von Luxburg (2007).

The main objective of clustering is to partition data into groups so that similar-
ity between different groups is minimized. Hence similarity based clustering can be
modeled as a graph cut problem. Let each data instance be a vertex and each pair of
vertices be connected with an edge with a weight equal to the similarity of the pair. We

7



can then represent the data and its similarity using an undirected graph G = (V,E), with
vertices V = {v1,v2, ...,vn} corresponding to data instances and an adjacency matrix W
summarizing similarities, where Wi j is the similarity between vi and v j.

Let d be the degree vector of each vertex with di =
∑

j Wi j and D be the diagonal
matrix with d on the diagonal. From the degree matrix D and the weighted adjacency
matrix W , a Laplacian matrix, which is fundamental in spectral clustering computation,
can be introduced. There are different variations in the definition of Laplacian. The rel-
evant definition to our discussion in this paper is the symmetric normalized Laplacian
L = I − D−1/2WD−1/2 Ng et al. (2002).

The key idea of a spectral clustering algorithm is to determine clustering member-
ship of data instances by applying a simple clustering technique, e.g., k-means, on a
subset of eigenvectors (typically the first few non-principal eigenvectors) of a graph
Laplacian matrix, see, e.g., Shi and Malik (2000); Ng et al. (2002). Assume that the
eigenvalues of L are

λ0 ≤ λ1 ≤ ·· · ≤ λn−1

and g∗k is an eigenvector associated with λk, k = 0, · · · ,n−1. Let e be a n-by-1 vector of
ones. Since LD

1
2 e = D

1
2 e − D− 1

2 We = 0 and L is positive semidefinite, g∗0 = D
1
2 e is the

principal eigenvector associated with the minimum eigenvalue λ0 = 0.
Note that the kth non-principal eigenvector solves

min
g∈<n

gT Lg

subject to g⊥g∗i , i = 0, · · · ,k − 1 (4)
gT g = υ

where υ =
∑n

i=1 di.
Since the principal eigenvector corresponding to λ0 = 0 is g∗0 = D

1
2 e, each non-

principal eigenvector g∗i satisfies

(D
1
2 e)T g∗i = 0

we immediately note that each g∗i always contain both positive and negative compo-
nents, which we can group them into a positive class C+ = { j : (g∗i ) j ≥ 0} and a negative
class C− = { j : (g∗i ) j < 0}.

Indeed, following the typical motivation of spectral clustering, the spectral opti-
mization problem (4) can be regarded as a relaxation of an integer programming prob-
lem, which models a normalized graph 2-cut problem. We refer an interested reader to
Von Luxburg (2007) for a more detailed discussion. Consequently a spectral clustering
based on m eigenvectors can be regarded as a m-step iterative bi-clustering (classifica-
tion) method, in which each successive iteration looks for a bi-clustering in the space
orthogonal to the first (m − 1) bi-clustering eigenvector space. To determine clustering
membership from the eigenvectors of Laplacian, typically another clustering method,
e.g., k-means, is applied. Clustering methods such as k-means typically require the
number of clusters k to be specified a prior.

The main objective of this paper is to develop a ranking method for anomaly di-
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rectly; it is not the determination of cluster membership. In order to achieve this, it
is important to have a better understanding on the information which is present in the
eigenvector components.

Next we present a new interpretation of the non-principal eigenvectors for Lapla-
cian, which will provide a basis for our proposed spectral ranking method for anomaly.

4. Spectral Laplacian Optimization as Approximation to Unsupervised SVM

Consider the first non-principal eigenvector for the normalized spectral optimiza-
tion, denoted as g∗ for notational simplicity. Then

min
g∈<n

gT Lg

subject to eT D
1
2 g = 0 (5)

gT g = υ

Recalling that L = I − D− 1
2 WD− 1

2 and ignoring the constant, (5) is equivalent to

min
g∈<n

−gT D− 1
2 WD− 1

2 g

subject to eT D
1
2 g = 0 (6)

gT g = υ

Assume that z = D
1
2 g. Then (6) is equivalent to

min
z∈<n

−zT D−1WD−1z

subject to eT z = 0 (7)
zT D−1z = υ

Assuming that W is positive definite in the space {z : (D
1
2 e)T z = 0}, the ellipsoidal

equality constraint in (7) can be replaced by an inequality constraint

min
z∈<n

−zT D−1WD−1z

subject to eT z = 0 (8)
zT D−1z≤ υ,

since the ellipsoidal constraint in (8) should be active at a solution.
However (8) can be considered as an approximation to the following nonconvex

problem

min
z∈<n

−zT Kz

subject to eT z = 0 (9)
|z| ≤C
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where C = υ · d 1
2 and K = D−1WD−1. Here we have approximated the ellipsoidal in-

equality constraint in (8) by the rectangular constraint in (9).
Interestingly, optimization problem (9) can be regarded as an approximation to the

following formulation of the unsupervised support vector machine

min
y∈{±1}

max
0≤α≤C
yT α=0

−
1
2
αTY KYα+ eTα (10)

where Y = DIAG(y), and the optimal decision function for the 2-class classification if
given by

f (x) =
n∑

i=1

α∗i y∗i K(xi,x) + b∗

and the magnitude of the coefficient α∗i signifies the degree of support of the i-th data
instance in the optimal decision function. In particular, the data instance corresponding
to α∗i > 0 is termed as a support vector in SVM.

Theorem 1. Suppose that K is symmetric positive definite. Let (α∗,y∗) be a solution
to the unsupervised SVM (10). Let z∗ solve the relaxation problem (9). Assume that
the solution to

max
0≤α≤C
yT α=0

−
1
2
αTY ∗z KY ∗z α+ eTα (11)

is achieved at the vertex ofFα = {α : 0<α≤C}, where Y ∗z = DIAG(y∗z ). If eTα∗ = eTα∗z ,
then α∗z = |z∗| and y∗z = SIGN(z∗) solve the unsupervised SVM (10).

The proof of this theorem is given in Appendix A. We note that in connecting
spectral optimization (5) with unsupervised SVM (10), the rectangular constraint in
(9) has been approximated by the ellipsoidal constraint in (8).

In addition to being a relaxation of the unsupervised SVM, we also note that the
objective function in (9) can be decomposed as

sim(C+) + sim(C−) − 2× sim(C+,C−)

where C+ = { j : z j ≥ 0}, C− = { j : z j < 0}, sim(C) =
∑

i, j∈C |zi||z j|Ki j measures simi-
larity of instance in C (C can be either C+ or C−, and sim(C+,C−) =

∑
i∈C+, j∈C−

|zi||z j|Ki j
measures similarity between C+ and C−. Consequently, (9) corresponds to maximizing
a measure of cluster quality.

Theorem 1 suggests that the normalized spectral optimization problem (5) can be
regarded as an approximation to the unsupervised SVM problem (10) with the kernel
K = D−1WD−1 and C = υ ·d 1

2 .
Since the optimal separating hypothesis from the unsupervised SVM has the form

f (x) =

 n∑
j=1

y∗jα
∗
j ·K(x,x j) + b∗
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and a non-principal eigenvector of the normalized spectral clustering z∗ yields an ap-
proximation |z∗| ≈ α∗ and SIGN(z∗) ≈ y∗, which are the coefficients of the bi-class
separating optimal decision function, |z∗j | provides a measurement of the strength of
support from the jth data point on the two class separation decision. We note how-
ever that, due to the use of the ellipsoidal constraint rather than rectangular constraints
and other approximations, z∗ is different from the exact SVM decision function coeffi-
cients. In particular, the eigenvector is likely to have mostly nonzero components, i.e.,
every data point offers support to some degree in this two clusters separation.

In addition, assume that g∗1 is the first non-principal eigenvector of the unnormal-
ized Laplacian L, i.e., L = I − W , with the eigenvalue λ1. Then K = W and z∗1 = g∗1 .
Under this assumption, it can be easily verified that

Kz∗1 = (1 +λ1)z∗1 .

Consequently

(1 +λ1)z∗1 = Kz∗1 ≈


f (x1)
f (x2)

...
f (xn)

− b∗

Consequently z∗1 can be interpreted as a constant scaling-translation mapping of the
approximate optimal bi-class separation function f (x) evaluated data instances. Hence
it is reasonable to use spectral optimization solution z∗ as the ranking for the bi-cluster
separation.

5. A New Spectral Ranking for Anomaly

In standard spectral analysis, a k-means clustering method is typically applied to
non-principal eigenvectors to determine clustering memberships. Our discussion in §4
suggests that the components of a non-principal eigenvector z∗ has meaning beyond
indicating a cluster membership. In fact |z∗| provides a bi-class clustering strength
measure in an optimal bi-class clustering in the high dimensional feature space accord-
ing to the assumed similarity. We now graphically illustrate in details the information
in a non-principal eigenvector z∗ and motivate how the information can be used to
rank anomaly. Furthermore, we allow a choice of the reference in the assessment of
anomaly ranking. If the minority cluster class does not have a sufficient mass, one can
choose to assess anomaly likelihood with respect to a single majority class and ranking
is generated suitably with this view. Otherwise, anomaly is assessed with two main
clusters.

Figure 1 presents a visual illustration of the clustering strength information in the
first non-principal eigenvector for a balanced two-cluster data set. We consider the 1st
and the 2nd non-principal eigenvector of the Laplacian corresponding to the Gaussian
kernel with bandwidth σ = 1 as the similarity. Subplot (a) graphs the original 2-D data
while Subplot (b) graphs points in the space of the 1st and 2nd non-principal eigen-
vectors. To see how the original data points correspond to points in the eigenvector
space, we assign each data point in the dimension of the 1st non-principal eigenvector,
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(b) Visualization of z∗1 = D1/2g∗1 and z∗2 =
D1/2g∗2
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Figure 1: Visualizing Information in the 1st Non-principal Eigenvector: two balanced
clusters with noise

z∗ = D1/2g∗1 , a unique color with the darker color corresponds to a larger magnitude in
the 1st non-principal eigenvector component. The color of the original data point in
Subplot (a) is the same as the color of the corresponding point in the eigenvectors in
Subplot (b). The colormap is shown at the right side of Subplot (a) and Subplot (b) in
Figure 1. We also graph the density of the 1st non-principal eigenvector in Subplot (c),
which clearly indicating presence of two clusters in this case.

From Figure 1, it can be observed that the bi-class clustering strength |z∗| of global
outliers, typically corresponding to colors in yellow and green, is the smallest. In ad-
dition, data points which are closer to the other cluster have the light blue or light red
colors; this suggest that they offer less information in defining the clusters and con-
sequently the corresponding clustering strength |z∗| is smaller than that of the cluster
cores, colored as dark blue and dark red.

In Figure 2 we consider instead a synthetic example which includes major cluster
patterns in combination with small cluster patterns. Subplots (a), (b), and (c) are sim-
ilarly generated as in Figure 1. From Figure 2, data points in two smaller clusters lie
closer to the origin and are depicted in lighter colors. In addition, similar to Figure
1, we observe that global outliers mostly have smallest clustering strength support and
lie near the origin (in yellow and green). In addition, data points which are closer to
the other cluster offer less information in defining the clusters and consequently the
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corresponding clustering strength |z∗| is smaller. We can also see from the darkness of
red and blue color that the edge of the major clusters has relatively smaller clustering
strength(|z|) than the core of the major clusters. Note that the density plot of the 1st
non-principal eigenvector in Subplot (c) now has three modes and indicates presence
of additional small clusters.

Figure 1 and 2 demonstrate that the 1st non-principal eigenvector indeed contains
major bi-class clustering support strength, which can be used to produce ranking for
anomaly, either global outliers or small anonymous patterns relative to major normal
clusters. In this paper, we propose to define the anomaly score as f∗ = ‖z∗‖∞ − |z∗|,
which yields larger positive values for points closer to the origin, e.g., global outliers
or anonymous small clusters. The edges of the major clusters will be ranked as more
abnormal next and the core of the major clusters will be ranked as least abnormal. This
indeed is reasonable and represents our intention.
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(b) Visualization of z∗1 = D1/2g∗1 and z∗2 =
D1/2g∗2
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(c) Kernel Density Estimation

Figure 2: Visualizing Information in the 1st Non-principal Eigenvector: two major
patterns and small clusters

In practice there often can be cases when there is only one major pattern for the nor-
mal class with small clusters representing a rare class (possibly with global outliers).
Figure 3 illustrates such an example. Under this scenario, it is more reasonable to re-
gard one of the two clusters represented in the 1st non-principal eigenvector as anony-
mous with respect to the major pattern. In this case, the appropriate ranking score can
be generated from either f∗ = z∗ or f∗ = −z∗, depending on whether the smaller cluster
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(b) Visualization of z∗1 = D1/2g∗1 and z∗2 =
D1/2g∗2
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(c) Kernel Density Estimation

Figure 3: Visualizing Information in the 1st Non-principal Eigenvector: one major
pattern and anonymous small clusters

corresponds to positive or negative values. Note that global outliers, if present, will be
ranked as next abnormal cases. The major cluster will have the smallest eigenvector
components and will be ranked as the least abnormal.

The above synthetic examples illustrate the information in the first non-principal
eigenvector described in §4. Using the cluster support strength information in the
non-principal eigenvector, we propose a new Spectral Ranking for Abnormality (SRA)
method, which is summarized in Algorithm 1. If one of C+ and C− is sufficiently small
in size relative to the other, the proposed SRA provides anomaly ranking score f∗ with
respect to one majority class (rare class ranking). Otherwise SRA yields an anomaly
ranking with respect to the two (±) major classes. Specifically, let C+ = {i, (g1)∗i ≥ 0}
and C− = {i, (g∗1)i < 0} denote data instance index sets corresponding to non-negative
and negative value in g∗1 respectively. In addition, assume that an a priori upper bound
for the anomaly ratio χ is given. If min{ |C+|

n , |C−|
n } ≥ χ, then neither the set C+ nor C− is

considered as an anomaly class and SRA outputs ranking with respect to multiple pat-
terns. Otherwise, SRA outputs anomaly ranking with respect to a single majority class.
If the 1st non-principal eigenvector is relatively balanced, |C+| ≈ |C−|, SRA outputs
anomaly ranking with respect to multiple patterns.

One of the main advantages of the proposed SRA over existing anomaly ranking
methods is that our proposed SRA can distinguish simultaneously small clusters and
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global outliers from majority patterns. The existing methods typically require a user to
target one instead of both cases. In addition, our proposed SRA distinguishes edges of
the main clusters from the core of the main clusters. Finally, SRA can be easily applied
to both cases when there are multiple patterns(clusters) for the normal class and cases
when only one major pattern exists.

Algorithm 1: Spectral Ranking for Abnormality (SRA)
Input: W : An n-by-n similarity matrix W .

χ: Upper bound of the ratio of anomaly
Output: f∗ ∈ <n: A ranking vector with a larger value representing more

abnormal
mFLAG : A flag indicating ranking with respect to multiple major

patterns or a single major pattern
begin

Form Laplacian L = I − D−1/2WD−1/2 ;

Compute z∗ = D
1
2 g∗1 where g∗1 is the 1st non-principal eigenvector for L ;

Let C+ = {i : z∗i ≥ 0} and C− = {i : z∗i < 0};
if min{ |C+|

n , |C−|
n } ≥ χ then

mFLAG = 1, f∗ = max(|z∗|) − |z∗| ;
else if |C+|> |C−| then

mFLAG = 0, f∗ = −z∗ ;
else

mFLAG = 0, f∗ = z∗ ;
end

end

6. SRA for an Auto Insurance Fraud Detection

To illustrate the effectiveness of the proposed SRA, we apply it to a fraud detection
problem from auto insurance claim data which has been used for the supervised detec-
tion in Phua et al. (2004). This is the only publicly available auto insurance fraud data
that we can find from the academic literature. This data set, which is provided by An-
goss KnowledgeSeeker software, consists of 15420 claim instances from January 1994
to December 1996. The data set consists of 6% fraudulent labels and 94% legitimate
labels, with an average of 430 claims per month. In addition, the data set has 6 ordinal
features and 25 categorical features.

This insurance claim data, used in our subsequent study, consists of 31 features,
all of which can be considered categorical or ordinal. Feature examples include base
policy, fault, vehicle category, vehicle price (6 nominal values), month of accidents,
make of the car, accidental area, holiday, sex. Intuitively, anomaly in this case should
be assessed with respect to nominal value combinations. Consequently the Hamming
distance and Hamming distance based kernels are reasonable similarities to use.
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In Phua et al. (2004), this data set is used to assess achievable prediction quality
from the supervised learning. Since labels for auto insurance claims are generally not
available at the detection time, here we apply our proposed unsupervised SRA to the
claim data set. In other words, the labels are used only for performance evaluation.

The Receiver Operating Characteristic (ROC) can be used to obtain a class skew
independent measure Provost et al. (1997); Bradley (1997); Metz (1978). The ROC
graph is obtained by plotting the true positive rate (number of true positives divided
by m+) against the false positive rate (number of false positives divided by m−) as
the threshold level is varied. The true positive rate (also known as sensitivity) is one
evaluation criterion and the false positive rate (or one minus specificity) is the second
evaluation criterion.

The ROC curves (or true-positive and false-positive frontiers) depict the trade-off
between the two criteria, benefits (true positive) and costs (false positives), for different
choices of the threshold. Thus it does not depend on a priori knowledge to combine
the two objectives into one. A ROC curve that dominates another provides a better
solution at any cost point and it corresponds to a higher area under the curve (AUC). In
addition, AUC yields the probability that the generated ranking places a positive class
sample above a negative class sample when the positive sample is randomly drawn from
the positive class and the negative class sample is drawn randomly from the random
class respectively DeLong et al. (1988). Thus, the ROC curves and AUC can be used
as a criteria to measure how well an algorithm performs on certain data sets. In the
subsequent section, we will use AUC and ROC curves to compare different methods.
The target class is the rare class.

When performing unsupervised fraud detection on this data, we recall two major
challenges which have been briefly mentioned in previous sections. Firstly, most of the
features in this dataset are categorical or ordinal. Secondly, unlike common anomaly
detection problems, the claim data forms multiple patterns. Consequently a single
cluster based global outlier detection method generally produces unsatisfactory results.

For comparison, we include performance of two existing popular unsupervised out-
lier detection methods, one-class SVM (OC-SVM) and Local Outlier Factor (LOF). In
addition, we train supervised Random Forest (RF) on the full dataset. The training
accuracy of RF can then be used as an upper bound for evaluations of unsupervised
learning methods. For the Random Forest (RF) computational results, the number of
trees built is 500 and the number of features used for building each tree is 6. The re-
sultant votes are used as the decision value. Since |C+| ≈ |C−| for all the similarities
we have experimented with, we always report ranking with regard to multiple patterns
(mFLAG=1) for this auto insurance fraud detection problem. Table 1 summarizes the
AUCs from different unsupervised methods using different similarities.

Next we present more detailed discussions on the comparison in terms of ROCs
for different kernels and different methods. Unless otherwise noted, we always include
performance of the supervised RF to show the upper bound.

Comparisons with LOF and OC-SVM for Overlapping Similarity
We first compare performance of SRA with that of LOF, OC-SVM on overlapping

similarity. We note that, in contrast to SRA which does not require any parameter itself,
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Table 1: Summary of the AUCs for the Auto Insurance Fraud Detection Data Set

Automobile Fraud Detection Data Set

Method OS
AGK HDK

DISCβ λ
10 100 1000 3000 0.5 0.8

LOF ksvm

10 0.53 0.5 0.52 0.58 0.64 0.52 0.53 0.55
100 0.51 0.51* 0.54 0.58 0.67 0.51 0.52 0.57
500 0.53 0.52* 0.55 0.59 0.68 0.51 0.51 0.57
1000 0.53 0.52* 0.53 0.59 0.69 0.5 0.5 0.56
3000 0.5 0.58* 0.55 0.58 0.69 0.54* 0.55* 0.53

OC-SVM νsvm

0.01 0.51* 0.53* 0.51* 0.54 0.59 0.51* 0.52* 0.53*
0.05 0.51* 0.53* 0.51* 0.55 0.59 0.52* 0.53* 0.52*
0.1 0.51* 0.54* 0.51* 0.55 0.59 0.53* 0.54* 0.56*

SRA mFLAG 1 0.73 0.74 0.74 0.66 0.74 0.74 0.74 0.66

For entries marked by *, AUC reported is one minus the actual AUC (which is below
0.5).

OS:Overlapping Similarity, AGK: Adaptive Gaussian Kernel
HDK:Hamming Distance Kernel, DISC: DISC Similarity
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(a) Visualization of z∗1 = D1/2g∗1 and z2 = D1/2g∗2
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Figure 4: Comparing SRA, LOF, and OC-SVM Based on the Overlapping Similarity.
SRA clearly dominates LOF and OC-SVM.
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(a) Visualization of z∗1 = D1/2g∗1 and z∗2 = D1/2g∗2
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Figure 5: Comparisons Based on an Adaptive Gaussian Kernel with β = 100
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(a) Visualization of z∗1 = D1/2g∗1 and z∗2 = D1/2g∗2
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Figure 6: Comparisons Based on a Hamming Distance Kernel with λ = 0.8

LOF requires an addition parameter for the number of neighborhood nLOF and OC-
SVM requires an additional width parameter µSVM. This can present more challenges
for unsupervised learning since there is no mechanism to decide how to choose their
values.

Figure 4 presents ROC curves for (supervised) RF, SRA, LOF, and OC-SVM,
where latter three used overlapping similarity. We emphasize that the only parame-
ter required by SRA is the upper bound on the anonymous rate, which we believe that
it is reasonable to expect a crude approximation at least in practice. For the auto fraud
insurance data set used here, since |C+| and |C−| are always roughly balanced, we al-
ways choose to report rankings with multiple patterns and the choice of χ is practically
irrelevant. For LOF and OC-SVM however, parameter choices are important and we
report the optimal AUCs among different parameters we have experimented with.

Comparisons Using Adaptive Gaussian Kernel with Weighted Hamming Distance.
Figure 5 shows ROC curves for SRA, LOF, OC-SVM achieved with the Adaptive

Gaussian Kernel with the weighted Hamming distance and neighborhood size β = 100.
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Figure 7: Comparisons Based on DISC Similarity

We observe that AUC for each of SRA, LOF and OC-SVM is improved. We conjecture
that the improvement comes from the facts that the weighted hamming distance is a
better distance measures than hamming distance since information on the number of
distinct value in each feature is also included. From Figure 5, we also observe that,
using the adaptive Gaussian kernel, clusters are also more distinct comparing to the
overlapping kernel.

Comparisons Using the Hamming Distance Kernel
Hamming distance kernel is defined based on the overlapping similarity measure.

However, as discussed previously, a Hamming distance kernel can capture more infor-
mation than the simple Hamming distance (overlapping similarity). This is because
that, while Hamming distance directly compare nominal values of x and y to determine
the number of different values, In contrast, a Hamming distance kernel assesses the
similarity between x and y in referencing to all possible nominal value combinations
of categorial attributes. Indeed, from Figure 6 which compares performance of SRA,
LOF and OC-SVM using a hamming distance kernel, we observe a complex cluster
structure, even though SRA achieves a similar 0.74 AUC.

Comparisons Using DISC Similarity
We have also experimented with a few distribution driven similarity measures, e.g.,

Lin similarity Boriah et al. (2008), and the results are consistently worse (less than 0.6
AUC) in comparison to overlapping, adaptive gaussian and hamming distance kernel.
The only exception is that of the DISC similarity measure. Figure 7 compares AUCs
of SRA, LOF, OC-SVM using DISC similarity. We observe here that a different clus-
ter structure is revealed using DISC. Once again, we observe that SRA significantly
dominates LOF and OC-SVM.

Understanding Cluster Structure: Further Validation of SRA Ranking
To further justify the SRA ranking generated, we seek to understand the cluster

structure revealed. Specifically we investigate significant features under which highly
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ranked claims are different from the majority. If deviation from the majority is based
on features which are expected to lead to suspiciousness, this provides supports for
the generated ranking. As an example, we consider clusters identified using Hamming
kernel with λ = 0.8.

Figure 8 is identical to Subplot (a) in Figure 6, except that clusters formed in the
space of the 1st and 2nd non-principal eigenvectors are depicted with different colors.
We report the fraud ratio of each cluster in Table 2. It can be seen from the plot and the
table that 92% of the fraudulent cases actually reside in the regions colored in black,
brown and purple. These are also the regions that have relatively high anomaly score
from SRA. This intrigues us to further understand each cluster, especially the one with
the highest fraud ratio.

−2 −1 0 1 2
−3

−2

−1

0

1

2

1st Non−principal Eigenvector

2n
d 

N
on

−
pr

in
ci

pa
l E

ig
en

ve
ct

or

Figure 8: Clusters With Color

nI : # instance nL: # legal cases
nF : # fraud χ f : fraud ratio

Cluster nI nL nF χ f
1 (blue) 723 722 1 0.0014
2 (green) 3261 3228 33 0.0101
3 (red) 4266 4231 35 0.0082
4 (black) 6423 5622 761 0.1185
5 (yellow) 206 203 3 0.0146
6 (purple) 340 294 46 0.1353
7 (brown) 201 157 44 0.2189

Table 2: Cluster Summary Information

For this purpose, we build an unpruned standard CART (classification and regres-
sion tree) to determine the decision rule for each cluster. The training labels for CART
are the cluster labels we manually identify from the 1st and 2nd non-principal eigen-
vectors and the training data is the whole data set. Figure 9 describes the computed
CART tree.

We can discover several rules from Figure 9 for the clusters (colored in black,
brown and purple) for which SRA has assigned high ranks:

• If the insurance policy is for collision or all perils and it is the policy holder
who causes the accident(policy holder at fault), the corresponding claim would
belong to the clusters with high fraud ratio (colored in black, brown and purple).

• If the insurance policy is for liability and/or and it is not the policy holder who
causes the accident(third party at fault), the corresponding claim would belong
to the other clusters (colored in blue, red, yellow and green).

• Following the first rule, If the policy holder drives sports car, the corresponding
claim would belong to cluster 7(colored in brown). If the policy holder drive
utility car, the corresponding claim would belong to cluster 6(colored in purple).
Otherwise, the corresponding claim would belong to cluster 4 (colored in black)

Indeed these rules identify cases with reasonable doubt. In addition, from training
supervised random forest in the previous section, we have learnt that the three most
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Figure 9: Decision Tree: rules leading to the colored clusters

important features in classify fraudulent cases against legal cases are base policy, car
types and fault. These three features are actually the features used in defining the clus-
ters. This analysis supports that the ranking from SRA is meaningful and reasonable.

7. Illustrating SRA: Beyond Insurance Fraud Detection

We have so far focused on applying SRA to the challenging auto insurance fraud
detection problem. While a future thorough study is necessary, using two real rare class
classification data sets from UCI machine learning repository, we demonstrate here that
the proposed SRA can potentially be applied for rare class classification problems when
rare class can be distinguished from the major class based on attributes dependence.
We also illustrate that SRA can be applied for problems with numerical features, how
the choice of kernel parameters affect the results of the SRA ranking, and potential
enhancement by using multiple non-principal eigenvectors.

SRA With Respect to One Major Pattern
We first consider the breast cancer Wisconsin data. The breast cancer Wisconsin

data set has 699 instances, with 458 cases are benign and 241 cases are malignant.
The malignant cases can be regarded as the rare class and anonymous with respect to a
pattern of normal cases. All the features are numerical. We apply a Gaussian kernel on
the standardized data set. The visualizations of eigenvectors (z∗1 = D1/2g∗1) are shown
in Figure 10 for different σ values. In addition, Subplot (c) in Figure 10 illustrates
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Figure 10: Breast Cancer: Visualization of z∗1 = D1/2g∗1 and z∗2 = D1/2g∗2

how AUC changes with σ for Gaussian kernel, with reference both to multiple main
clusters (mFLAG=1) and single main cluster (mFLAG=0) cases are reported. As can
be seen, for this data set, since the distribution of the 1st non-principal eigenvector is
always skewed, output rank against two major patterns (mFLAG=1) will not provide
satisfactory results. However, we can choose the perspective of rare class ranking easily
by setting the upper bound anonymous ratio χ, e.g., setting χ > 241

699 ≈ 34% will set set
mFLAG=0 and allow adoption of this perspective.

Effect of the Gaussian Kernel Parameter
For numerical data, the most often used similarity is a distance based Gaussian

kernel, which has a width parameter σ. This parameter may change clustering patterns:
when σ→ 0, data points become further apart and there appears to be more clusters.
When σ→ +∞, data points all become similar and data appears to form a single cluster.
It can be expected, for certain data, when the parameter σ is small multiple patterns for
normal class emerge while with large σ value usually only one pattern exists.

Using Multiple Non-principal Eigenvectors
Up until now, we have only utilized the 1st non-principal eigenvector when gener-

ating the ranking. In fact subsequent bi-modal eigenvectors can potentially be used to
gain further performance improvement. To illustrate we consider the mushroom data
set as an illustration of the potential improvement that can be achieved by considering
more than one non-principal eigenvectors in generating the ranking vector. The origi-
nal data set consists of 8124 instances. We create normal cases by including all 4208
edible samples and randomly selecting 300 poisonous samples. All features in this data
set are categorical and we use Hamming distance kernel(λ = 0.5) as similarity for SRA.
Figure 11 presents visualization of eigenvectors. Using the 1st non-principal eigenvec-
tor only, the SRA ranking yields 0.76 AUC. Using the 2nd non-principal eigenvector,
the corresponding ranking yields 0.93 AUC. Using the 1-norm of the both eigenvec-
tors, i,e., summation of the absolute values of the two score vectors, AUC is increased
to 0.98. We leave how to best utilize multiple eigenvectors in generating ranking to
future studies.
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Figure 11: Mushroom (Hamming Kernel Similarity)

8. Concluding Remarks

In this paper, we propose a spectral ranking method for anomaly (SRA). By estab-
lish a relationship between unsupervised SVM optimization and spectral optimization
formulations, we observe that the spectral optimization can be considered as an ap-
proximation (relaxation) of the unsupervised SVM. For example, the absolute value of
a non-principal eigenvector is a measure of strength of support in a bi-clustering and a
non-principal eigenvector can be regarded as a ranking vector, which is an approxima-
tion to the optimal hypothesis for a bi-class unsupervised SVM evaluated at the given
data instances. Based on this information in the eigenvector, a data instance is more
likely to be an anomaly if its magnitude is smaller. Furthermore, we allow a choice of
the reference in the assessment of anomaly ranking. If the minority cluster class does
not have a sufficient mass, one can choose to assess anomaly likelihood with respect
to a single majority class and ranking is generated suitably with this view. Otherwise,
anomaly is assessed with two main clusters.

As an illustration the proposed SRA, we consider the challenging auto fraud in-
surance detection problem based on a real claim data set. Since obtaining such labels
are time consuming, costly, and error prone in real applications, we model the prob-
lem as unsupervised learning and ignore labels when generating ranking using SRA,
even though fraud labels are given for this particular data set. Since data attributes
are categorical, we assess anomaly in nominal value combinations which lead to sus-
piciousness of the claim. We choose Hamming distance and Hamming distance based
kernels in generating spectral ranking for this data set. SRA yields an impressive 0.74
AUC, which is close to 0.83 AUC generated by the supervised RF. We also illustrate
unsupervised ranking performance on a couple real data problems which demonstrate
the potential and possible further enhancement of the proposed SRA.
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Appendix A. A Nonconvex Relaxation of the Unsupervised SVM

Here we present a nonconvex relaxation for the unsupervised SVM.
We start with the supervised SVM formulation. Assume thatD = {(x1,y1), (x2,y2), ..., (xn,yn)}

is a set of n training examples, where xi ∈ X ⊆ Rd , yi ∈ {+1,−1}. Let φ : D → F be
a non-linear map from the input space D to a (potentially infinite dimensional) feature
space F derived from feature inputs. Let K(x,x′) ≡ φ(x)Tφ(x′) be the corresponding
kernel, where K :D×D→ R.

Given labels y, SVM solves

min
w,b,ξ

1
2
‖w‖2

+

n∑
i=1

ciξi,

subjecto to yi
(
wTφ(xi) + b

)
≥ 1 − ξi, i = 1, ...,n, (A.1)

ξi ≥ 0, i = 1, ...,n ,

where ξi’s are slack variables when training instances are not linearly separable. The
regularization weight C = (c1, · · · ,cn) ≥ 0 is a penalty, associated with margin viola-
tions, which determines the trade-off between model accuracy and complexity.

The optimal decision function f (x) then has the form

f (x) =

 n∑
j=1

y jα jK(x,x j) + b

 (A.2)

where α is computed by solving the SVM below

min
u,b,ξ

1
2

n∑
i, j=1

yiy jαiα jK(xi,x j) +

n∑
i=1

ciξi,

subject to yi

 n∑
j=1

y jα jK(xi,x j) + b

≥ 1 − ξi, i = 1, ...,n, (A.3)

ξi ≥ 0, i = 1, ...,n ,

Note that {xi : αi 6= 0} are the support vectors for the classification problem.
For unsupervised SVM learning, the objective becomes determining the optimal

labels based on margin maximization SVM. The basic idea is to optimally choose the
labels y so that the corresponding margin maximization optimal hypothesis yields the
minimum SVM objective. In other words, unsupervised SVM solves the following
nested minimization problem

min
yi∈{±1}

{
min

w,ξ,b,yi(wT φ(xi)+b)≥1−ξi,ξi≥0

1
2
‖w‖2

2 +

n∑
i=1

ciξi

}
(A.4)

Replacing the inner optimization problem by its dual, unsupervised SVM (A.4) is
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equivalent to the following minmax problem:

min
yi∈{±1}

max
0≤α≤C
yT α=0

−
1
2
αTY KYα+ eTα (A.5)

where Y = DIAG(y).
For any given y, we can introduce the following transformation:

zi = αi · yi, i = 1, · · · ,n

For any αi 6= 0, we have
yi = sign(zi), i = 1, · · · ,n (A.6)

In addition,
αTY KYα = zT Kz, eTα = eT |z|, and yTα = eT z

Therefore, for any given y, the inner optimization problem in (A.5) is equivalent to

max
z

eT |z|− 1
2

zT Kz

subject to eT z = 0, (A.7)
|z| ≤C

We note that eT |z| is convex and (A.7) has many local maximizers.
Now assume that K is positive definite in the space {z : eT z = 0}. Then the local

minimizers of

min
z

−
1
2

zT Kz

subject to eT z = 0, (A.8)
|z| ≤C

are at the boundary of |z| ≤C. If all local maximizers of (A.8) have the same value for
the term eT |z|, then unsupervised SVM (A.5) is equivalent to (A.8). Note that (A.8)
remains an NP-hard problem.

Theorem 2. Suppose that K is symmetric positive definite. Let (α∗,y∗) be a solution to
the unsupervised SVM (A.5). Let z∗ solves the relaxation problem (A.8). Assume that
the solution to

max
0≤α≤C
yT α=0

−
1
2
αTY ∗z KY ∗z α+ eTα (A.9)

is achieved at the vertex ofFα = {α : 0<α≤C}, where Y ∗z = DIAG(y∗z ). If eTα∗ = eTα∗z ,
then α∗z = |z∗| and y∗z = SIGN(z∗) solves the unsupervised SVM (A.5).

PROOF. Since K is a symmetric positive definite (SPD), both Y ∗KY ∗ and Y ∗z KY ∗z are
SPD. Hence (A.9) has a unique solution which is the unique vertex of Fα.
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Since K is positive definite, a solution z∗ to (A.8) must be at a vertex of the region
Fz = {z : eT z = 0 |z| ≤C}. Hence α∗z satisfies y∗z

Tα = 0 and is at the unique vertex of
Fα = {α : 0< α≤C}.

Following the assumption, the solution to (A.9) satisfies αT y∗z = 0 and is at the
unique vertex of Fα = {α : 0< α≤C}. This implies that α∗z solves (A.9).

Since (α∗,y∗) solves the unsupervised SVM (A.4), we have(
−

1
2
α∗TY ∗KY ∗α∗ + eTα∗

)
≤
(

−
1
2
α∗z

TY ∗z KY ∗z α
∗
z + eTα∗z

)
(A.10)

where Y ∗ = DIAG(y∗). Following the assumption eTα∗ = eTα∗z , we have

−
1
2
α∗TY ∗KY ∗α∗ ≤ −

1
2
α∗z

TY ∗z KY ∗z α
∗
z . (A.11)

It is clear that Y ∗α∗ is a feasible point for the relaxation problem (A.8). Since z∗

solves (A.8),

−
1
2
α∗z

TY ∗z KY ∗z α
∗
z ≤ −

1
2
α∗TY ∗KY ∗α∗. (A.12)

From (A.11), (A.12), and eTα∗ = eTα∗z , we conclude thatα∗z = |z∗| and y∗z = SIGN(z∗)
solves the unsupervised SVM (A.5). This completes the proof.
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